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Abstract. We compute level densities with a nuclear statistical spectroscopy approach. This model is
based on the microscopic physics of the interacting shell model. The level density is constructed by means
of a sum of binomial distributions. The partial densities correspond to different configurations of the
valence space. The individual binomial parameters fit the exact configuration moments. Calculations of
level densities for sd-shell nuclides show the model to work well, when compared to exact calculations with
full-diagonalization shell model.

PACS. 21.10.-k Properties of nuclei; nuclear energy levels – 21.10.Ma Level density – 26.50.+x Nuclear
physics aspects of novae, supernovae, and other explosive environments

1 Introduction

The level density —number of excited states per MeV of
excitation energy— is an important input to estimate re-
action rates in nucleosynthesis. Theoretical prescriptions
to calculate nuclear level densities have been developed
since Bethe’s formulation [1]. Modifications to this model
have been made to include important nuclear properties
such as shell effects or neutron resonance spacings [2,3,4].
On the other hand, full shell model calculations are now
possible up to A ≈ 70, although these are often limited
by heavy computational loads. We use statistical spectro-
copy concepts [5] to model the level density in the shell
model using the binomial distribution, first suggested by
Zuker [6]. We use the configuration scheme —m-particles
distribuited over spherical shell model j-orbits— to com-
pute level densities. The purpose of this work is not to
compute “exact” shell model calculations [7], but to use
binomial distributions to model the configuration level
densities and get the approximate secular behavior of the
total level density. We apply the binomial fit to each con-
figuration and sum over all of them to obtain the total
level density. The exploration of the model is currently
done in sd-shell nuclei. A brief description of the method
is presented, and some preliminary results explained.

2 The method

Statistical spectroscopy argues that the nuclear proper-
ties are defined by the nuclear moments. Following this
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approach we get the configuration moments of the nu-
cleus and construct a binomial fit for each partition of the
shell model space. We then get the total level density by
adding all the partial densities. The sum of the partitioned
binomials (SUPARB) can be compared then, at least for
light nuclei in the sd-shell, against full-diagonalization
shell model calculations.

2.1 The binomial distribution

Every configuration of the valence space contributes with
a partial density. Based on the lowest nuclear moments,
each partial density is constructed with a binomial fit

(1 + λ) =

N
∑

k=0

λk

(

N
k

)

, (1)

where N and λ are obtained from conditions to fit the
width and third moment of a given configuration, and k
is related to the scaled excitation energy.

We make use of analytic formulae to compute the mo-
ments [8,9]. The point of using this procedure is to avoid
a full shell model calculation to get the configuration mo-
ments. Even when the computation of the moments using
such formulae is computationally exhaustive for heavier
nuclei, it is still a lot more convenient than performing
a full shell model calculation. Moreover, the partitioned
scheme we use is highly suitable to run on parallel com-
puters and substantially reduce the time to calculate the
moments. Once we have the binomial fit for every config-
uration we get the total level density straightforwardly by
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Fig. 1. Calculated level density for 21Ne. A few individual
contributions ρα (broken lines, coloured on line) are shown.
The total level density (solid, black line) is the sum over all the
configurations. The unscaled Wildenthal interaction was used.

adding up the calculated partial densities. To illustrate
this, a qualitative plot of the configurations densities is
shown in fig. 1. The plots of broken lines in the figure cor-
respond to a selected set of partial densities, labeled by α.
In the case of 21Ne there are only 54 of such configura-
tions. One advantage of this method is that it is mostly
analytic, so it will be suitable for nuclei in the sdpf -shell,
which have thousands of valence space configurations (i.e.
5× 105 for 54Fe up to 3p-3h configurations).

2.2 Performance of the model

To test the reliability of the method, we have performed
calculations of level densities for several nuclides in the sd-
shell with the Wildenthal interaction [10] and compared
them to exact calculations. To accomplish the compari-
son we made use of the REDSTICK shell model code [11].
Figure 2 shows the 20Ne, 34Ar and 34Cl level densities
computed with the SUPARB method described here, com-
pared against exact shell model calculations. The SU-
PARB computations shown in fig. 2 reveal an overall good
fit of the exact level density in all three cases, although our
interest is in the low-energy region (up to 20MeV), where
experimental data is available. We get similar results for
other sd-shell nuclei. We plan to extend these calculations
to larger spaces, namely, the sdpf and sdpf + g9/2 shells,
where exact calculations are very difficult to perform.

Besides the level density, computations of locally av-
eraged expectation values of operators and J-dependent
level densities with spin cut-off are also possible within
this approach. We will explore these possibilites in the
short term.

3 Conclusions

The SUPARB method to calculate level densities has been
described here. The valence space is partitioned and the
total level density obtained from the sum of the corre-
sponding partial densities. In our preliminary calculations
we have seen evidence that the binomial distribution fits
well the level density for sd-shell nuclei, when compared
against full-diagonalization shell model calculations. Be-
sides this, the method presented here has also shown to
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Fig. 2. 20Ne, 34Ar and 34Cl level densities in the sd-shell. The
SUPARB calculation (broken line) described here is compared
with the “exact” shell model calculations [11] (solid, stair line).

have the advantage of being computationally cheap, since
we use analytic formulae and implement the calculation
of the moments in parallel computers.

We will continue the study of light nuclei, although our
ultimate goal is to compute level densities in the pf -shell,
namely, V, Mn, Ti, Co isotopes. Also, we are interested in
testing different interactions like the Gogny interaction or
the surface-delta interaction to see how the results depend
on the matrix elements used. Furthermore, we have a par-
ticular interest to see how the computed level density with
this method compares to available experimental data in
the pf -shell. These investigations are currently underway.
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